شاید بارها از خود پرسیده باشید ساختار فیزیکی سلول های خورشیدی به چه شکل می باشد؟در این مقاله به صورت ساده و شفاف به این سوال شما پاسخ داده خواهد شد:

با اتصال یک نیمه هادی نوع p به یک نیمه هادی نوع n، الکترون ها از ناحیه n به ناحیه p و حفره ها از ناحیه p به ناحیه n منتقل می شوند. با انتقال هر الکترون به ناحیه p ، یک یون مثبت در ناحیه n و با انتقال هر حفره به ناحیه n، یک یون منفی در ناحیه p باقی می ماند. یون های مثبت و منفی میدان الکتریکی داخلی ایجاد می کنند که جهت آن از ناحیه n به ناحیه p است.
این میدان با انتقال بیشتر باربرها (الکترون ها و حفره ها)، قوی تر و قویتر شده تا جایی که انتقال خالص باربرها به صفر می رسد. در این شرایط ترازهای فرمی دو ناحیه با یکدیگر هم سطح شده اند و یک میدان الکتریکی داخلی نیز شکل گرفته است.

اگر در چنین شرایطی، نور خورشید به پیوند بتابد، فوتون هایی که انرژی آنها از انرژی شکاف نیمه هادی بیشتر است، زوج الکترون حفره تولید کرده و زوج هایی که در ناحیه تهی یا حوالی آن تولید شده اند، شانس زیادی دارند که قبل از ترکیب، توسط میدان داخلی پیوند از هم جدا شوند. میدان الکتریکی، الکترون ها را به ناحیه n وحفره ها را به ناحیه p سوق می دهد.

به این ترتیب تراکم بار منفی در ناحیه n و تراکم بار مثبت در ناحیه p زیاد می شود. این تراکم بار، به شکل ولتاژی در دو سر پیوند قابل اندازه گیری است.
اگر دو سر پیوند با یک سیم، به یکدیگر اتصال کوتاه شود، الکترون های اضافی ناحیه n، از طریق سیم به ناحیه p رفته و جریان اتصال کوتاهی را شکل می دهند.

اگر به جای سیم از یک مصرف کننده استفاده شود، عبور جریان از مصرف کننده، به آن انرژی می دهد. به این ترتیب انرژی فوتون های نور خورشید به انرژی الکتریکی تبدیل می شود.

هر چه میدان الکتریکی درون پیوند قوی تر باشد، ولتاژ مدار باز بزرگتری بدست می آید. برای دست یافتن به یک میدان الکتریکی بزرگ، باید اختلاف ترازهای فرمی دو ماده p و n از یکدیگر زیاد باشد.

برای این منظور باید انرژی شکاف نیمه هادی بزرگ انتخاب شود. بنابراین ولتاژ مدار باز یک سلول خورشیدی با انرژی شکاف آن افزایش می یابد. اما افزایش انرژی شکاف سبب می شود، فوتون های کمتری توانایی تولید زوج الکترون حفره داشته باشند و بنابراین جریان اتصال کوتاه کمتری نیز تولید شود.

بنابراین افزایش انرژی شکاف، روی ولتاژ مدار باز و جریان اتصال کوتاه سلول دو اثر متفاوت دارد.

ساختار فیزیکی سلول های خورشیدی

برای استفاده از سلول ها در مدار های الکتریکی نیاز هست تا مشخصه ی الکتریکی ولتاژ جریان یک سلول خورشیدی را داشته باشیم. این مشخصه را می توان از طریق مدار زیر بدست آورد، کافی است چند نقطه از منحنی مشخصه را بدست آورده و آن را در نرم افزار های ریاضی ترسیم نمود.

ساختار فیزیکی سلول های خورشیدی (1)

این مشخصه الکتریکی به شدت نور تابیده شده، بستگی دارد و منحنی مشخصه آن بسته به شدت نور تغییر می کند و این تغییر به گونه ایست باعث افزایش جریان اتصال کوتاه می شود.

ساختار فیزیکی سلول های خورشیدی (2)

در نهایت می توان برای یک سلول خورشیدی یک مدل الکتریکی از اِلمان اصلی مانند خازن، مقاومت و منابع مستقل بدست آورد و به جای سلول در مدارهای الکتریکی پیچیده قرار داده ومدار را توسط شبیه ساز های الکتریکی تحلیل کرد.

ساختار فیزیکی سلول های خورشیدی (3)ولتاژی که یک سلول در برابر شدت نور نامی تولید می کند در حدود نیم ولت و جریان اتصال کوتاه آن می تواند از محدوده میلی آمپر تا چندین آمپر تغییر کند. حداکثر توان تولیدی یک سلول برابر حاصل ضرب ولتاژ مدار باز در جریان اتصال کوتاه می باشد که با این حساب توان تولیدی نامی سلول مشخص می شود. بنابراین توان تولیدی یک سلول نوعی از محدوده ی چندمیلی وات تا چند وات تغییر خواهد کرد.

یکی از عواملی که در توان تولیدی سلول تاثیر گذار هست، اندازه سطح سلول می باشد و هر چه مساحت سلول بیشتر باشد ، توان تولیدی نیز بیشتر خواهدبود. توان تولیدی علاوه بر سطح به شدت نور نیز بستگی دارد و با افزایش شدت نور، توان تولیدی افزایش می یابد.

دمای سلول باعث کاهش ولتاژ پیوند دیودی سلول شده و باعث کاهش توان تولیدی می گردد ولی تاثیر آن، شدید نبوده و گاهی قابل اغماض نیز هست.

 

 

 

شرکت مهندسی تکسا، طراح و تولید کننده انواع استراکچرهای خورشیدی و سازه های فلزی

برای مشاهده قیمت و نحوه ی فروش استراکچرهای خورشیدی تکسا با ما تماس بگیرید.

درباره عالیه مدرسیان

ارسال دیدگاه

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *